Supervised Quantum Learning without Measurements
نویسندگان
چکیده
منابع مشابه
Inductive Supervised Quantum Learning.
In supervised learning, an inductive learning algorithm extracts general rules from observed training instances, then the rules are applied to test instances. We show that this splitting of training and application arises naturally, in the classical setting, from a simple independence requirement with a physical interpretation of being nonsignaling. Thus, two seemingly different definitions of ...
متن کاملQuantum Mechanics Without Measurements
Many of the conceptual problems students have in understanding quantum mechanics arise from the way probabilities are introduced in standard (textbook) quantum theory through the use of measurements. Introducing consistent microscopic probabilities in quantum theory requires setting up appropriate sample spaces taking proper account of quantum incompatibility. When this is done the Schrödinger ...
متن کاملQuantum learning without quantum memory
A quantum learning machine for binary classification of qubit states that does not require quantum memory is introduced and shown to perform with the minimum error rate allowed by quantum mechanics for any size of the training set. This result is shown to be robust under (an arbitrary amount of) noise and under (statistical) variations in the composition of the training set, provided it is larg...
متن کاملSupervised Learning with Quantum-Inspired Tensor Networks
Tensor networks are efficient representations of high-dimensional tensors which have been very successful for physics and mathematics applications. We demonstrate how algorithms for optimizing such networks can be adapted to supervised learning tasks by using matrix product states (tensor trains) to parameterize models for classifying images. For the MNIST data set we obtain less than 1% test s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/s41598-017-13378-0